

流行病学与因果推断

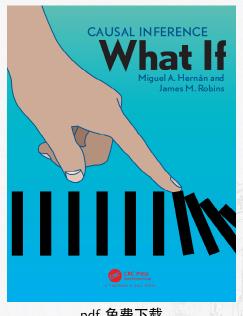
战义强

公共卫生学院 (深圳) 中山大学

2025 年春

▶ 36 学时, 4 学时/周

▶ 考察: 出勤 50%, 2-3 人小组汇报 20%, 个人作业 30%


▶ 理论 + 实践 (R 软件)

▶ 助教:刘琦, liug567@mail2.sysu.edu.cn

▶ 教材:无,每节课课后给大家参考资料

参考教材

pdf 免费下载

- ▶ 流行病学定义、目的、因果推断的定义
- ▶ 混杂的定义和识别、RCT、工具变量、孟德尔随机化、倾向性评分
- ▶ 回归、双重差分、断点回归、固定效应模型、标准化方法
- ▶ 选择偏倚的识别、交互作用与效应修饰、测量误差
- ▶ 逆概率加权、生存分析的因果推断方法

▶ 什么是流行病学 Epidemiology

背景

- ► 什么是流行病学 Epidemiology
- ▶ 流行病学是研究人群中疾病与健康状况的分布及其影响因素,并研究防制疾病和促进健康的策略和措施的科学(詹思延,流行病学,第八版)

- ► 什么是流行病学 Epidemiology
- ▶ 流行病学是研究人群中疾病与健康状况的分布及其影响因素,并研究防制疾病和促进健康的策略和措施的科学(詹思延,流行病学,第八版)
- ▶ 流行病学是研究人群中疾病与健康状态的分布及其影响因素, 防制疾病的发生, 促进人群健康的一门医学学科(徐飚,流行病学原理)

- ► 什么是流行病学 Epidemiology
- ▶ 流行病学是研究人群中疾病与健康状况的分布及其影响因素,并研究防制疾病和促进健康的策略和措施的科学(詹思延,流行病学,第八版)
- ▶ 流行病学是研究人群中疾病与健康状态的分布及其影响因素, 防制疾病的发生, 促进人群健康的一门医学学科(徐飚,流行病学原理)
- ▶ 流行病学是医学中的一门学科,它研究疾病的分布、生态学及防制对策。(苏德隆)

- ► 什么是流行病学 Epidemiology
- ▶ 流行病学是研究人群中疾病与健康状况的分布及其影响因素,并研究防制疾病和促进健康的策略和措施的科学(詹思延,流行病学,第八版)
- ▶ 流行病学是研究人群中疾病与健康状态的分布及其影响因素, 防制疾病的发生, 促进人群健康的一门医学学科(徐飚,流行病学原理)
- ▶ 流行病学是医学中的一门学科,它研究疾病的分布、生态学及防制对策。(苏德隆)

- ▶ 什么是流行病学 Epidemiology
- ▶ 流行病学是研究人群中疾病与健康状况的分布及其影响因素,并研究防制疾病和促进健康的策略和措施的科学(詹思延,流行病学,第八版)
- ▶ 流行病学是研究人群中疾病与健康状态的分布及其影响因素, 防制疾病的发生, 促进人群健康的一门医学学科(徐飚,流行病学原理)
- ▶ 流行病学是医学中的一门学科,它研究疾病的分布、生态学及防制对策。(苏德隆)

苏德隆 (1906 - 1985)

- ▶ 什么是流行病学 Epidemiology
- ▶ 流行病学是研究人群中疾病与健康状况的分布及其影响因素,并研究防制疾病和促进健康的策略和措施的科学(詹思延,流行病学,第八版)
- ▶ 流行病学是研究人群中疾病与健康状态的分布及其影响因素,防制疾病的发生,促进人群健康的一门医学学科(徐飚,流行病学原理)
- ▶ 流行病学是医学中的一门学科,它研究疾病的分布、生态学及防制对策。(苏德隆)

苏德隆 (1906 - 1985) 毛主席 《送瘟神》:借问瘟君欲何往,纸船明烛照天烧

- ▶ 什么是流行病学 Epidemiology
- ▶ 流行病学是研究人群中疾病与健康状况的分布及其影响因素,并研究防制疾病和促进健康的策略和措施的科学(詹思延,流行病学,第八版)
- ▶ 流行病学是研究人群中疾病与健康状态的分布及其影响因素,防制疾病的发生,促进人群健康的一门医学学科(徐飚,流行病学原理)
- ▶ 流行病学是医学中的一门学科,它研究疾病的分布、生态学及防制对策。(苏德隆)

苏德隆 (1906 - 1985) 毛主席 《送瘟神》:借问瘟君欲何往,纸船明烛照天烧

► Epidemiology is the study and analysis of the distribution (who, when, and where), patterns and determinants of health and disease conditions in defined populations. (Wikipedia)

- ▶ Epidemiology is the study and analysis of the distribution (who, when, and where), patterns and determinants of health and disease conditions in defined populations. (Wikipedia)
- ► Epidemiology is the study of the distribution and determinants of disease frequency in human populations. *Modern Epidemiology* (4th Edition)

- ► Epidemiology is the study and analysis of the distribution (who, when, and where), patterns and determinants of health and disease conditions in defined populations. (Wikipedia)
- ► Epidemiology is the study of the distribution and determinants of disease frequency in human populations. *Modern Epidemiology* (4th Edition)
- ► Epidemiology is the study of how disease is distributed in populations and the factors that influence or determine this distribution. *Gordis Epidemiology* (6th)

Prof. Leon Gordis (1934 - 2015)

流行病学的研究目的

流行病学的研究目的

- ▶ 描述 Description
 - ▶ 连续性变量:均数、标准差、众数等
 - ▶ 分类变量:患病率、发病率、死亡率、病死率等
- ▶ 预测 Prediction
 - ▶ 诊断
 - ▶ 预后
- ▶ 因果 Causation/Association (Counterfactual Prediction 反事实预测)
 - ▶ 治疗效果/副作用
 - ▶ 政策干预效果
 - ▶ 病因 (危险因素) 探索

X

C

Y

▶ 演绎推理 Deductive reasoning (上 → 下)

- ▶ 演绎推理 Deductive reasoning (上 → 下)
 - ▶ 所有的人都会死亡. (第一个前提假设)

- ▶ 演绎推理 Deductive reasoning (上 → 下)

 - 所有的人都会死亡. (第一个前提假设)苏格拉底是个人. (第二个前提假设)

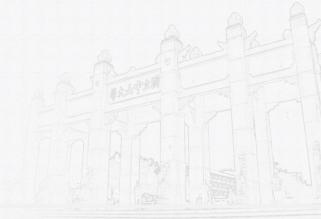
- ▶ 演绎推理 Deductive reasoning (上 → 下)
 - 所有的人都会死亡. (第一个前提假设)苏格拉底是个人. (第二个前提假设)所以, 苏格拉底是会死亡的. (结论)

- ▶ 演绎推理 Deductive reasoning (上 → 下)
 - 所有的人都会死亡 (第一个前提假设)苏格拉底是个人 (第二个前提假设)

 - ▶ 所以, 苏格拉底是会死亡的. (结论)
- ▶ 归纳推理(下→上)

- ▶ 演绎推理 Deductive reasoning (上 → 下)
 - ▶ 所有的人都会死亡. (第一个前提假设)
 - ▶ 苏格拉底是个人 (第二个前提假设)
 - ▶ 所以, 苏格拉底是会死亡的 (结论)
- ▶ 归纳推理(下→上)
 - ▶ 这个公园里的乌鸦是黑色的

- ▶ 演绎推理 Deductive reasoning (上 → 下)
 - ▶ 所有的人都会死亡. (第一个前提假设)
 - ▶ 苏格拉底是个人. (第二个前提假设)
 - ▶ 所以, 苏格拉底是会死亡的. (结论)^ˆ
- ▶ 归纳推理(下→上)
 - ▶ 这个公园里的乌鸦是黑色的
 - ▶ 那个公园里的乌鸦是黑色的

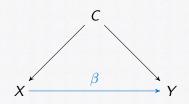

- ▶ 演绎推理 Deductive reasoning (上 → 下)
 - ▶ 所有的人都会死亡. (第一个前提假设)
 - ▶ 苏格拉底是个人 (第二个前提假设)
 - ▶ 所以, 苏格拉底是会死亡的. (结论)^ˆ
- ▶ 归纳推理(下→上)
 - ▶ 这个公园里的乌鸦是黑色的
 - ▶ 那个公园里的乌鸦是黑色的
 - ▶ 所有乌鸦都是黑色的

- ▶ 演绎推理 Deductive reasoning (上 → 下)
 - ▶ 所有的人都会死亡. (第一个前提假设)
 - ▶ 苏格拉底是个人. (第二个前提假设)
 - ▶ 所以, 苏格拉底是会死亡的. (结论)²
- ▶ 归纳推理 (下→上)
 - ▶ 这个公园里的乌鸦是黑色的
 - ▶ 那个公园里的乌鸦是黑色的
 - ▶ 所有乌鸦都是黑色的
- ▶ 流行病学是那种推理?

如何进行因果推断呢?

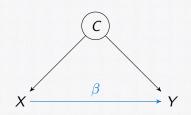
如何进行因果推断呢?

做实验/试验,最好是随机对照试验


▶ 细胞层面: 基因编辑等

▶ 动物层面: 给药、食物等

▶ 人: 临床试验、随机对照临床试验


观察性研究中的因果推断

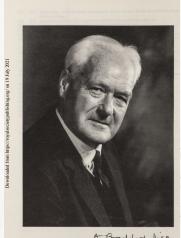
- ▶ 我们希望,在 C 存在的情况下,能够估计 X 对 Y 的因果效应
- ▶ 我们假设 C 是足够的
- ▶ 然后我们使用可以考虑/控制 C 的统计方法:
 - ▶ 调整、控制、标准化
 - ▶ 倾向性评分
 - **•** ...

- ▶ 然而,通常我们不知道 C 是否是足够的
- ▶ 或者我们不愿意假设 C 是足够的
- ▶ 所以,存在一些尚未被测量的 C
- ▶ 然而,我们仍然希望能够估计 X 对 Y 的效应
- ▶ 怎么办?

在回答这个问题之前

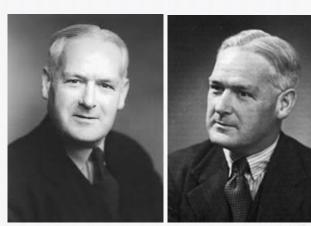
统计学的关联

- ▶ 要得到因果效应,首先需得到统计学的关联
- ▶ 统计学上的关联意味着:两个因素倾向于一起出现
- ▶ 比如: 吸烟的人通常会出现肺癌(与一般人相比)
- ▶ 在医院里面的人通常是患病的人(与在医院外面的人相比)



然而,相关并不意味着因果关系

- ▶ 除了因果关系之外,还有其他可以解释以下关系的原因吗?
- ▶ 吸烟和肺癌
- ▶ 在医院里面和患病



- ► Temporality 关联的时序性
- ▶ Strength 强度
- Consistency 一致性
- ▶ Specificity 特异性
- ▶ Dose-response relationship 剂量反应 关系
- Plausibility 合理性
- Coherence 一致性
- Experimental evidence 实验证据
- ► Analogy 类推性

A Bredford Sice

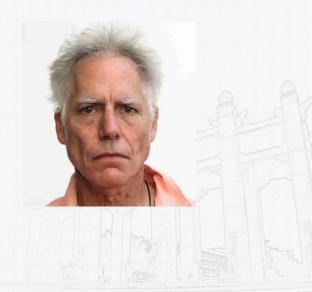
Sir Austin Bradford Hill (8 July 1897 - 18 April 1991)

Sir Austin Bradford Hill (8 July 1897 - 18 April 1991)

因果效应的定义

- ▶ Hill 准则只是关于病因的一些可能的共同的特征(定性描述)
- ▶ 没有对因果效应进行定义
- ▶ 除了第一个"时序性",病因可能不满足其余的任何条件
- ▶ 因此,我们需要对因果效应 causal effect, 进行准确的定义

Donald Rubin 对因果效应进行了正式的定义:潜在结果模型(反事实模型、虚拟现实模型、平行空间的另外一个场景)



简史: 1980s

James Robins 研发了估计因果效应的模型: 边际结构模型 Marginal Structural Models (MSMs),特别适合于纵向数据/重复测量数据

Judea Pearl 研发了单向无环图 Directed Acyclic Graphs (DAGs): 极大的方便了观察性研究中因果推断的解释、变量的选择、以及与他人的交流和解释

- ▶ Brian MacMahon 和 Thomas Pugh: "…an association may be classed presumptively as causal when it is believed that, had the cause [exposure] been altered, the effect [outcome] would have changed."
- ▶ 如果对暴露因素做出改变,结局也会发生变化,那么就可以把这个"关联"当 作"因果关系"
- ▶ 所以,这个描述的关键点在于它的"反事实(平行空间的)"部分,如果(时间可以倒流)暴露因素不是现在我们已经观察到的这个暴露因素/水平,是其他,那么结局将会是什么?

- ▶ 我们要估计 X 对 Y 的效应
- ightharpoonup 在潜在结果模型的框架下,用 $Y_{
 m x}$ 代表: 如果 X 的值被设置成 x 时的量
- ▶ 如果暴露是二分类的, 那么就有两个潜在的结果: Y₀, Y₁
- ▶ 对某一个个体来说,我们只能观察到其中的一个结果,这个结果就是当暴露因 素是实际发生的时候,实际观察到的结果
- ▶ 如果某个个体的暴露水平是 X = 0,那么我们观察到了 Y_0 ,同时,我们没有观察到 Y_1 , $Y_0 = Y$
- ▶ 如果某个个体的暴露水平是 X = 1, 那么我们观察到了 Y_1 , 同时,我们没有观察到 Y_0 , $Y_1 = Y$

- ▶ Y₀ 和 Y₁ 就是潜在的结果
- ▶ 理想状态下,我希望能够对所有人,都同时观察到 Y_0 and Y_1
- ▶ 例如:

Subject	Y_0	Y_1
id1	0	1
id2	0	0
id3	1	1

- ▶ 如果,对于某一个具体的个体来说,其潜在的结果不一致, Y_0 和 Y_1 不相等,那么,我们就说,X 对 Y 有因果效应
- ▶ id1, 暴露有因果效应 $Y_0 \neq Y_1$
- ▶ id2 和 id3, 暴露没有因果效应 $Y_0 = Y_1$

- ▶ 假设 id1 是暴露 (X = 1), 那么 $Y = Y_1$, Y_0 是反事实的
- ▶ 假设 id2 和 id3 是非暴露 (X = 0), 那么 $Y = Y_0$, Y_1 is 是反事实的

Subject	Χ	Υ	Y_0	Y_1
id1	1	1	?	1
id2	0	0	0	?
id3	0	1	1	?

- ▶ 我们实际上对每一个研究对象真的观察到了"潜在结果"中的一个,这被称为 "一致性假设 consistency assumption";
- ▶ 用公式表述的话,一个实际暴露水平为 X = x, 那么他的实际观察到的结局与潜在的结局是相等的 $Y = Y_x$
- ▶ 我们定义个体的因果效应为两个潜在结果之间的差异 Y₁ Y₀.
- ▶ 如果差值 $Y_1 Y_0$ 不为 0,那么我们就说暴露对结局有作用
- 然而,我们通常观察不到某一个具体的个体的两个潜在结果,所以,我们在个体水平上无法计算个体的因果效应
- ightharpoonup 然而,我们可能希望能够计算整个人群的平均的个体因果效应 $E(Y_1-Y_0)$
- ▶ 即使我们能够计算整个人群的平均的因果效应 $E(Y_1 Y_0)$,我们仍然需要其他的研究假设: 我们可以假设"潜在结果"在不同的组别之间的分布是一致的(不同组别之间是可比的 comparable)

- ▶ 如何估计人群的平均因果效应呢 $E(Y_1 Y_0)$?
- ▶ 我们仅仅观察到了 E(Y|X=1) E(Y|X=0).
- ▶ 所以,我们需要其他额外的假设

- ▶ 在 RCT 中,所有处理/治疗之前 (pre-treatment) 的变量都与处理/治疗措施 (treatment) 无关,例如:年龄、性别、遗传、环境等因素均与治疗本身无关;
- ▶ "潜在结果" (Y_0, Y_1) 是处理前变量,他们是"虚拟的/假设的",不影响处理/治 疗措施, 也不受处理/治疗措施的影响;
- ▶ 因此, (Y₀, Y₁) ⊥ X
- ▶ 这意味着.

$$E(Y_0) = E(Y_0|X=0) = E(Y_0|X=1)$$
 (1)

$$E(Y_1) = E(Y_1|X=0) = E(Y_1|X=1)$$
 (2)

▶ 另外,基于"一致性的假设 consistency assumption"

$$E(Y_0) = E(Y_0|X=0) = E(Y|X=0)$$
 (3)

$$E(Y_1) = E(Y_1|X=1) = E(Y|X=1)$$
 (4)

因果推断 中山大学 ● 深圳 2025 年着

- ▶ 这样的情况在暴露因素(包括治疗措施等)是随机分配的情况下是合适的;
- ▶ 但是如果是观察性研究或者非随机暴露,这样的情况通常是不太可能
- ► 在这样的情况下,我们可能会假设至少在某些已测量的层内 *C*,不同的暴露组之间的潜在结果是可比的/一样的
- ▶ 这样的假设被称为 "无混杂假设 unconfoundedness"
- ▶ 不同的学科有不同的名称: "no-unmeasured-confounding" assumption 或者 "exchangeability" assumption (流行病), an "ignorable treatment assignment" assumption (统计学), or an "exogeneity" assumption (经济学).

- ▶ 如果测量了足够的 Z, 每一个潜在结果 Y_x 都与 X 相互独立
- ▶ 这意味着,在每个 Z 的组合生成的层里,潜在结果 Y_x 与实际接受到的 X 没有 关系
- ▶ 如果满足这样的假设的话,这两个组 X = 1 和 X = 0 的潜在结果 Y_0 是一致的; Y_0 的意思是,如果把暴露设置成 0,其所得到的潜在结果
- ▶ 与之类似,如果满足这样的假设的话,这两个组 X = 1 和 X = 0 的潜在结果 Y_1 是一致的; Y_1 的意思是,如果把暴露设置成 1,其所得到的潜在结果

- ▶ 我们用 E(Y|z) 表示当 Z = z 是 Y 的条件期望,意思是在亚组 Z = z 中 Y 的平均值
- 如果没有未被测量的混杂因素,那么我们可以得到每一个层内的平均因果效应值:

$$E(Y_1 - Y_0|Z) = E(Y_1|Z) - E(Y_0|Z)$$
(5)

$$= E(Y_1|X=1,Z) - E(Y_0|X=0,Z)$$
 (6)

$$= E(Y|X=1,Z) - E(Y|X=0,Z)$$
 (7)

- ▶ 第二个等式: no-unmeasured-confounding assumption
- ▶ 第三个等式: consistency assumption

传统的方法与因果推断的方法

传统的方法与因果推断的方法

- ▶ 最近的这些年,很多复杂的因果推断技术相继出现,比如 marginal structural models, propensity scores, Instrumental variables
- ▶ 有时候,这些方法比传统的方法好 (e.g. logistic regression)
- ▶ 然而,大多数情况下,传统的统计学分析方法,从因果推断的角度来说,同样 奏效